Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Biomol Struct Dyn ; : 1-17, 2021 Nov 16.
Article in English | MEDLINE | ID: covidwho-2257032

ABSTRACT

COVID-19, for which no confirmed therapeutic agents are available, has claimed over 48,14,000 lives globally. A feasible and quicker method to resolve this problem may be 'drug repositioning'. We investigated selected FDA and WHO-EML approved drugs based on their previously promising potential as antivirals, antibacterials or antifungals. These drugs were docked onto the nsp12 protein, which reigns the RNA-dependent RNA polymerase activity of SARS-CoV-2, a key therapeutic target for coronaviruses. Docked complexes were reevaluated using MM-GBSA analysis and the top three inhibitor-protein complexes were subjected to 100 ns long molecular dynamics simulation followed by another round of MM-GBSA analysis. The RMSF plots, binding energies and the mode of physicochemical interaction of the active site of the protein with the drugs were evaluated. Suramin, Penciclovir, and Anidulafungin were found to bind to nsp12 with similar binding energies as that of Remdesivir, which has been used as a therapy for COVID-19. In addition, recent experimental evidences indicate that these drugs exhibit antiviral efficacy against SARS-CoV-2. Such evidence, along with the significant and varied physical interactions of these drugs with the key viral enzyme outlined in this investigation, indicates that they might have a prospective therapeutic potential in the treatment of COVID-19 as monotherapy or combination therapy with Remdesivir.

2.
Molecules ; 28(6)2023 Mar 10.
Article in English | MEDLINE | ID: covidwho-2261562

ABSTRACT

Suramin was originally used as an antiparasitic drug in clinics. Here, we demonstrate that suramin can bind to the N-terminal domain of SARS-CoV-2 nucleocapsid protein (N-NTD) and disturb its interaction with RNA. The BLI experiments showed that N-NTD interacts suramin with a dissociate constant (Kd = 2.74 µM) stronger than that of N-NTD with ssRNA-16 (Kd = 8.37 µM). Furthermore, both NMR titration experiments and molecular docking analysis suggested that suramin mainly binds to the positively charged cavity between the finger and the palm subdomains of N-NTD, and residues R88, R92, R93, I94, R95, K102 and A156 are crucial for N-NTD capturing suramin. Besides, NMR dynamics experiments showed that suramin-bound N-NTD adopts a more rigid structure, and the loop between ß2-ß3 exhibits fast motion on the ps-ns timescale, potentially facilitating suramin binding. Our findings not only reveal the molecular basis of suramin disturbing the association of SARS-CoV-2 N-NTD with RNA but also provide valuable structural information for the development of drugs against SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Suramin/pharmacology , Nucleocapsid Proteins/chemistry , Molecular Docking Simulation , Models, Molecular , RNA, Viral/genetics
3.
J Virol Methods ; 298: 114283, 2021 12.
Article in English | MEDLINE | ID: covidwho-1428226

ABSTRACT

The SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) is essential for virus replication, therefore it is a promising drug target. Here we present a surface plasmon resonance approach to study the interaction of RdRp with drugs in real time. We monitored the effect of favipiravir, ribavirin, sofosbuvir triphosphate PSI-7409 and suramin on RdRp binding to RNA immobilized on the chip. Suramin precluded interaction of RdRp with RNA and even displaced RdRp from RNA.


Subject(s)
COVID-19 , RNA-Dependent RNA Polymerase , Antiviral Agents/pharmacology , Drug Interactions , Humans , RNA, Viral , SARS-CoV-2 , Suramin/pharmacology , Surface Plasmon Resonance
4.
Viruses ; 13(5)2021 05 10.
Article in English | MEDLINE | ID: covidwho-1290361

ABSTRACT

Since the first report of a new pneumonia disease in December 2019 (Wuhan, China) the WHO reported more than 148 million confirmed cases and 3.1 million losses globally up to now. The causative agent of COVID-19 (SARS-CoV-2) has spread worldwide, resulting in a pandemic of unprecedented magnitude. To date, several clinically safe and efficient vaccines (e.g., Pfizer-BioNTech, Moderna, Johnson & Johnson, and AstraZeneca COVID-19 vaccines) as well as drugs for emergency use have been approved. However, increasing numbers of SARS-Cov-2 variants make it imminent to identify an alternative way to treat SARS-CoV-2 infections. A well-known strategy to identify molecules with inhibitory potential against SARS-CoV-2 proteins is repurposing clinically developed drugs, e.g., antiparasitic drugs. The results described in this study demonstrated the inhibitory potential of quinacrine and suramin against SARS-CoV-2 main protease (3CLpro). Quinacrine and suramin molecules presented a competitive and noncompetitive inhibition mode, respectively, with IC50 values in the low micromolar range. Surface plasmon resonance (SPR) experiments demonstrated that quinacrine and suramin alone possessed a moderate or weak affinity with SARS-CoV-2 3CLpro but suramin binding increased quinacrine interaction by around a factor of eight. Using docking and molecular dynamics simulations, we identified a possible binding mode and the amino acids involved in these interactions. Our results suggested that suramin, in combination with quinacrine, showed promising synergistic efficacy to inhibit SARS-CoV-2 3CLpro. We suppose that the identification of effective, synergistic drug combinations could lead to the design of better treatments for the COVID-19 disease and repurposable drug candidates offer fast therapeutic breakthroughs, mainly in a pandemic moment.


Subject(s)
Coronavirus 3C Proteases/drug effects , Quinacrine/pharmacology , Suramin/pharmacology , Antiviral Agents/pharmacology , COVID-19 Vaccines/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus 3C Proteases/metabolism , Cysteine Endopeptidases/metabolism , Drug Repositioning , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Protease Inhibitors/pharmacology , Quinacrine/metabolism , SARS-CoV-2/drug effects , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Suramin/metabolism , Viral Nonstructural Proteins , COVID-19 Drug Treatment
5.
Front Mol Biosci ; 8: 640819, 2021.
Article in English | MEDLINE | ID: covidwho-1220125

ABSTRACT

COVID-19 has created a pandemic situation all over the world. It has spread in nearly every continent. Researchers all over the world are trying to produce an effective vaccine against this virus, however; no specific treatment for COVID-19 has been discovered -so far. The current work describes the inhibition study of the SARS-CoV-2 main proteinase or 3CL Mpro by natural and synthetic inhibitors, which include 2S albumin and flocculating protein from Moringa oleifera (M. oleifera) and Suramin. Molecular Docking study was carried out using the programs like AutoDock 4.0, HADDOCK2.4, patchdock, pardock, and firedock. The global binding energy of Suramin, 2S albumin, and flocculating proteins were -41.96, -9.12, and -14.78 kJ/mol, respectively. The docking analysis indicates that all three inhibitors bind at the junction of domains II and III. The catalytic function of 3CL Mpro is dependent on its dimeric form, and the flexibility of domain III is considered important for this dimerization. Our study showed that all three inhibitors reduce this flexibility and restrict their motion. The decrease in flexibility of domain III was further confirmed by analysis coming from Molecular dynamic simulation. The analysis results indicate that the temperature B-factor of the enzyme decreases tremendously when the inhibitors bind to it. This study will further explore the possibility of producing an effective treatment against COVID-19.

6.
Antimicrob Agents Chemother ; 64(8)2020 07 22.
Article in English | MEDLINE | ID: covidwho-574704

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic that originated in Wuhan, China, in December 2019 has impacted public health, society, the global economy, and the daily lives of billions of people in an unprecedented manner. There are currently no specific registered antiviral drugs to treat or prevent SARS-CoV-2 infections. Therefore, drug repurposing would be the fastest route to provide at least a temporary solution while better, more specific drugs are being developed. Here, we demonstrate that the antiparasitic drug suramin inhibits SARS-CoV-2 replication, protecting Vero E6 cells with a 50% effective concentration (EC50) of ∼20 µM, which is well below the maximum attainable level in human serum. Suramin also decreased the viral load by 2 to 3 logs when Vero E6 cells or cells of a human lung epithelial cell line (Calu-3 2B4 [referred to here as "Calu-3"]) were treated. Time-of-addition and plaque reduction assays performed on Vero E6 cells showed that suramin acts on early steps of the replication cycle, possibly preventing binding or entry of the virus. In a primary human airway epithelial cell culture model, suramin also inhibited the progression of infection. The results of our preclinical study warrant further investigation and suggest that it is worth evaluating whether suramin provides any benefit for COVID-19 patients, which obviously requires safety studies and well-designed, properly controlled randomized clinical trials.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Suramin/pharmacology , Virus Replication/drug effects , Animals , COVID-19 , Cell Line , Chlorocebus aethiops , Drug Evaluation, Preclinical , Drug Repositioning , Humans , Pandemics , SARS-CoV-2 , Vero Cells , Viral Load/drug effects , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL